A Role for Drosophila dFoxO and dFoxO 5′UTR Internal Ribosomal Entry Sites during Fasting
نویسندگان
چکیده
One way animals may cope with nutrient deprivation is to broadly repress translation by inhibiting 5'-cap initiation. However, under these conditions specific proteins remain essential to survival during fasting. Such peptides may be translated through initiation at 5'UTR Internal Ribosome Entry Sites (IRES). Here we show that the Drosophila melanogaster Forkhead box type O (dFoxO) transcription factor is required for adult survival during fasting, and that the 5'UTR of dfoxO has the ability to initiate IRES-mediated translation in cell culture. Previous work has shown that insulin negatively regulates dFoxO through AKT-mediated phosphorylation while dFoxO itself induces transcription of the insulin receptor dInR, which also harbors IRES. Here we report that IRES-mediated translation of both dFoxO and dInR is activated in fasted Drosophila S2 cells at a time when cap-dependent translation is reduced. IRES mediated translation of dFoxO and dInR may be essential to ensure function and sensitivity of the insulin signaling pathway during fasting.
منابع مشابه
dFoxO promotes Wingless signaling in Drosophila.
The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling...
متن کاملCharacterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny
The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identifi...
متن کاملInterplay of dFOXO and Two ETS-Family Transcription Factors Determines Lifespan in Drosophila melanogaster
Forkhead box O (FoxO) transcription factors (TFs) are key drivers of complex transcriptional programmes that determine animal lifespan. FoxOs regulate a number of other TFs, but how these TFs in turn might mediate the anti-ageing programmes orchestrated by FoxOs in vivo is unclear. Here, we identify an E-twenty six (ETS)-family transcriptional repressor, Anterior open (Aop), as regulated by the...
متن کاملdFOXO-independent effects of reduced insulin-like signaling in Drosophila
The insulin/insulin-like growth factor-like signaling (IIS) pathway in metazoans has evolutionarily conserved roles in growth control, metabolic homeostasis, stress responses, reproduction, and lifespan. Genetic manipulations that reduce IIS in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have been shown not only to produce substantial increases...
متن کاملThe Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling
BACKGROUND Forkhead transcription factors belonging to the FOXO subfamily are negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling pathway regulates the size of cells, organs, and the entire body in response to nutrient availability, by controlling both cell s...
متن کامل